

Heat pipe technologies for industrial applications

Challenging exhaust streams

(C) co's

Corrosive chemical composition

High flow rates

High temperature fluctuations

ETEKINA PROTOTYPES

Design solutions

Choice of optimal heat pipe dimensions, materials, arrangement in the HPHE, working fluid

simulation to study challenges

3 working prototypes for validation

State-of-the-art computer

Heat recovery

ALUMINIUM

Recovering

more than 40%

of the waste heat

stream in energy

intensive

industries

Fagor Ederlan Arrasate-Mondragón, Spain

Unit heat recovery: 88 kW Average reduction of GHG emissions: 110 tCO₂e/year Payback time: 24 months

leat recovery

leat recovery

Heat recovery

SIJ Metal Ravne Ravne na Koroškem, Slovenia

Unit heat recovery: 350 kW Average reduction of GHG emissions: 425 tCO₂e/year Payback time: 9 months

CERAMICS

Atlas Concorde Fiorano Modenese, Italy

Unit heat recovery: 700 kW
Average reduction of GHG emissions: 850 tCO₂e/year
Payback time: 24 months

- -> Lower CO₂ emissions
- -> Short payback time
- → Increased competitiveness
- -> Higher profitability
- -> Secure jobs

Partners

fagorederlangroup

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N° 768772.

www.etekina.eu

